3.1123 \(\int \frac{c+d x^2}{\sqrt{e x} (a+b x^2)^{7/4}} \, dx\)

Optimal. Leaf size=116 \[ \frac{2 \sqrt{e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac{2 (e x)^{3/2} \left (\frac{a}{b x^2}+1\right )^{3/4} (a d+2 b c) \text{EllipticF}\left (\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right ),2\right )}{3 a^{3/2} \sqrt{b} e^2 \left (a+b x^2\right )^{3/4}} \]

[Out]

(2*(b*c - a*d)*Sqrt[e*x])/(3*a*b*e*(a + b*x^2)^(3/4)) - (2*(2*b*c + a*d)*(1 + a/(b*x^2))^(3/4)*(e*x)^(3/2)*Ell
ipticF[ArcCot[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/(3*a^(3/2)*Sqrt[b]*e^2*(a + b*x^2)^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0934183, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {457, 329, 237, 335, 275, 231} \[ \frac{2 \sqrt{e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac{2 (e x)^{3/2} \left (\frac{a}{b x^2}+1\right )^{3/4} (a d+2 b c) F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{3 a^{3/2} \sqrt{b} e^2 \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)/(Sqrt[e*x]*(a + b*x^2)^(7/4)),x]

[Out]

(2*(b*c - a*d)*Sqrt[e*x])/(3*a*b*e*(a + b*x^2)^(3/4)) - (2*(2*b*c + a*d)*(1 + a/(b*x^2))^(3/4)*(e*x)^(3/2)*Ell
ipticF[ArcCot[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/(3*a^(3/2)*Sqrt[b]*e^2*(a + b*x^2)^(3/4))

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 237

Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Dist[(x^3*(1 + a/(b*x^4))^(3/4))/(a + b*x^4)^(3/4), Int[1/(x^3*
(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 231

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(3/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{c+d x^2}{\sqrt{e x} \left (a+b x^2\right )^{7/4}} \, dx &=\frac{2 (b c-a d) \sqrt{e x}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{\left (2 \left (b c+\frac{a d}{2}\right )\right ) \int \frac{1}{\sqrt{e x} \left (a+b x^2\right )^{3/4}} \, dx}{3 a b}\\ &=\frac{2 (b c-a d) \sqrt{e x}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{(2 (2 b c+a d)) \operatorname{Subst}\left (\int \frac{1}{\left (a+\frac{b x^4}{e^2}\right )^{3/4}} \, dx,x,\sqrt{e x}\right )}{3 a b e}\\ &=\frac{2 (b c-a d) \sqrt{e x}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{\left (2 (2 b c+a d) \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a e^2}{b x^4}\right )^{3/4} x^3} \, dx,x,\sqrt{e x}\right )}{3 a b e \left (a+b x^2\right )^{3/4}}\\ &=\frac{2 (b c-a d) \sqrt{e x}}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac{\left (2 (2 b c+a d) \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2}\right ) \operatorname{Subst}\left (\int \frac{x}{\left (1+\frac{a e^2 x^4}{b}\right )^{3/4}} \, dx,x,\frac{1}{\sqrt{e x}}\right )}{3 a b e \left (a+b x^2\right )^{3/4}}\\ &=\frac{2 (b c-a d) \sqrt{e x}}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac{\left ((2 b c+a d) \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a e^2 x^2}{b}\right )^{3/4}} \, dx,x,\frac{1}{e x}\right )}{3 a b e \left (a+b x^2\right )^{3/4}}\\ &=\frac{2 (b c-a d) \sqrt{e x}}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac{2 (2 b c+a d) \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2} F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{3 a^{3/2} \sqrt{b} e^2 \left (a+b x^2\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0564527, size = 79, normalized size = 0.68 \[ \frac{2 x \left (\left (\frac{b x^2}{a}+1\right )^{3/4} (a d+2 b c) \, _2F_1\left (\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{b x^2}{a}\right )-a d+b c\right )}{3 a b \sqrt{e x} \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)/(Sqrt[e*x]*(a + b*x^2)^(7/4)),x]

[Out]

(2*x*(b*c - a*d + (2*b*c + a*d)*(1 + (b*x^2)/a)^(3/4)*Hypergeometric2F1[1/4, 3/4, 5/4, -((b*x^2)/a)]))/(3*a*b*
Sqrt[e*x]*(a + b*x^2)^(3/4))

________________________________________________________________________________________

Maple [F]  time = 0.035, size = 0, normalized size = 0. \begin{align*} \int{(d{x}^{2}+c){\frac{1}{\sqrt{ex}}} \left ( b{x}^{2}+a \right ) ^{-{\frac{7}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x)

[Out]

int((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac{7}{4}} \sqrt{e x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)/((b*x^2 + a)^(7/4)*sqrt(e*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{\frac{1}{4}}{\left (d x^{2} + c\right )} \sqrt{e x}}{b^{2} e x^{5} + 2 \, a b e x^{3} + a^{2} e x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(1/4)*(d*x^2 + c)*sqrt(e*x)/(b^2*e*x^5 + 2*a*b*e*x^3 + a^2*e*x), x)

________________________________________________________________________________________

Sympy [C]  time = 141.547, size = 78, normalized size = 0.67 \begin{align*} - \frac{d{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{7}{4} \\ \frac{3}{2} \end{matrix}\middle |{\frac{a e^{i \pi }}{b x^{2}}} \right )}}{b^{\frac{7}{4}} \sqrt{e} x} + \frac{c \sqrt{x} \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{7}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{7}{4}} \sqrt{e} \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)/(e*x)**(1/2)/(b*x**2+a)**(7/4),x)

[Out]

-d*hyper((1/2, 7/4), (3/2,), a*exp_polar(I*pi)/(b*x**2))/(b**(7/4)*sqrt(e)*x) + c*sqrt(x)*gamma(1/4)*hyper((1/
4, 7/4), (5/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(7/4)*sqrt(e)*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac{7}{4}} \sqrt{e x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)/((b*x^2 + a)^(7/4)*sqrt(e*x)), x)